ENGINEERS ACADEMY

Question Bank

1. Match List-I (Curves labelled A, B, C and D in figure) with List-II (Type of fluid) and select the correct answer using the codes given below the lists:

Codes: A B C D

List-I

List-II

1. Ideal plastic
2. Ideal
3. Non-Newtonian
4. Rheopectic
5. Thixotropic

(a) 2	3	1	5
(b) 3	2	5	1
(c) 4	2	5	1
(d) 2	3	5	1

2. If bulk modulus of water is $2 \times 10^{8} \mathrm{kgf} / \mathrm{cm}^{2}$ $\left(19.62 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}\right)$, then water hammer wave celerity through a rigid pipe line will be
(a) $600 \mathrm{~m} / \mathrm{s}$
(b) $800 \mathrm{~m} / \mathrm{s}$
(c) $1200 \mathrm{~m} / \mathrm{s}$
(d) $1400 \mathrm{~m} / \mathrm{s}$
3. Surface tension is due to
(a) Cohesion and adhesion
(b) cohesion only
(c) Adhesion only
(d) None of the above
4. Continuum approach in fluid mechanics is valid when
(a) The compressibility is very high
(b) The viscosity is low
(c) The mean free path of the molecule is much smaller compared to the characteristic dimension
(d) $\mathrm{M} \gg 1$, where M is the Mach number
5. A fluid is said to be Newtonian fluid when the shear stress is
(a) directly proportional to the velocity gradient
(b) inversely proportional to the velocity gradient
(c) independent of the velocity gradient
(d) none of the above
6. A fluid is one which can be defined as a substance that:
(a) has same shear stress at all points
(b) can deform indefinitely under the action of the smallest shear force
(c) has the small shear stress in all directions
(d) is practically incompressible
7. The dimension of surface tension is:
(a) ML^{-1}
(b) $\mathrm{L}^{2} \mathrm{~V}^{-1}$
(c) $\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
(d) MT^{-2}
8. A dimensionless combination of pressure drop ΔP, dynamic viscosity μ, velocity V and length L is
(a) $\frac{\Delta \mathrm{P}}{\mathrm{V}^{2} \cdot \mathrm{~L}}$
(b) $\frac{V L}{\mu}$
(c) $\frac{\Delta \mathrm{P}}{\mu \cdot \mathrm{VL}}$
(d) $\frac{\Delta \text { P.L }}{\mu . V}$
9. Shear stress in the Newtonian fluid is proportional to
(a) pressure
(b) strain
(c) strain rate
(d) the inverse of the viscosity
10. A liquid of density ρ and dynamic viscosity μ flows steadily down an inclined plane in a thin sheet of constant thickness t. Neglecting air friction the shear stress on the bottom surface due to the liquid flow is (where θ is the angle, the plane makes with horizontal).
(a) $\rho g t \sin \theta$
(b) $\rho g t \cos \theta$
(c) $\mu \sqrt{g / t}$
(d) $\rho \mathrm{g}$.
11. With increase of temperature, viscosity of a fluid
(a) Does not change
(b) Always increases
(c) Always decreases
(d) Increases, if the fluid is a gas and decreases, if it is a liquid
12. The unit of dynamic viscosity of a fluid is
(a) $\mathrm{m}^{2} / \mathrm{s}$
(b) $\frac{\mathrm{N} \cdot \mathrm{s}}{\mathrm{m}^{2}}$
(b) $\frac{\mathrm{Pa} \cdot \mathrm{s}}{\mathrm{m}^{2}}$
(d) $\frac{\mathrm{kg} \cdot \mathrm{s}^{2}}{\mathrm{~m}^{2}}$
13. The unit of surface tension is:
(a) $\mathrm{N} / \mathrm{m}^{2}$
(b) J / m
(c) $\mathrm{J} / \mathrm{m}^{2}$
(d) W / m
14. If ' P ' is the gauge pressure within a spherical droplet, then gauge pressure within a bubble of the same fluid and of same size will be:
(a) $\frac{\mathrm{P}}{4}$
(b) $\frac{P}{2}$
(c) P
(d) 2 P
15. Kinematic viscosity of air at $20^{\circ} \mathrm{C}$ is given to be $1.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$. Its kinematic viscosity at $70^{\circ} \mathrm{C}$ will be varying approximately:
(a) $2.2 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(b) $1.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(c) $1.2 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
(d) $3.2 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
16. Match List-I (Fluid properties) with List-II (Related terms) and select the correct answer using the codes given below the lists:

List-I

A. Capillarity
B. Vapour pressure
C. Viscosity
D. Specific gravity

List-II

1. Cavitation
2. Density of water
3. Shear forces
4. Surface tension

Codes:

:	A	B	C	D
(a)	1	4	2	3
(b)	1	4	3	2
(c)	4	1	2	3
(d)	4	1	3	2

17. Which one of the following is the bulk modulus K of a fluid? (Symbols have the usual meaning)
(a) $\rho \frac{\mathrm{dp}}{\mathrm{d} \rho}$
(b) $\frac{d p}{\rho d \rho}$
(c) $\rho \frac{\mathrm{d} \rho}{\mathrm{dp}}$
(d) $\frac{d p}{\rho d p}$
18. Which of the following forces act on a fluid at rest?
19. Gravity force
20. Hydrostatic force
21. Surface tension
22. Viscous force

Select the correct answer using the codes given below:
(a) 1, 2, 3 and 4
(b) 1, 2 and 3
(c) 2 and 4
(d) 1, 3 and 4
19. Surface tension is due to
(a) viscous forces
(b) cohesion
(c) adhesion
(d) the difference between adhesive and cohesive forces
20. Newton's law of viscosity depends upon the
(a) stress and strain in a fluid
(b) shear stress, pressure and velocity
(c) shear stress and rate of strain
(d) viscosity and shear stress
21. If the surface tension of water-air interface is $0.073 \mathrm{~N} / \mathrm{m}$, the gauge pressure inside a rain drop of 1 mm diameter will be
(a) $0.146 \mathrm{~N} / \mathrm{m}^{2}$
(b) $73 \mathrm{~N} / \mathrm{m}^{2}$
(c) $146 \mathrm{~N} / \mathrm{m}^{2}$
(d) $292 \mathrm{~N} / \mathrm{m}^{2}$

ENGINEERS ACADEMY

Civil \& Mechanical Engg.

Introduction
22. A fluid compressed in a cylinder has a volume of $0.01132 \mathrm{~m}^{3}$ at a pressure of $70.30 \mathrm{~kg}(\mathrm{f}) / \mathrm{cm}^{2}$. What should be the new pressure in order to make its volume $0.01121 \mathrm{~m}^{3}$? Assume bulk modulus of elasticity K of the liquid as $7034 \mathrm{kgf} / \mathrm{cm}^{2}$.
(a) $140.2 \frac{\mathrm{kgf}}{\mathrm{cm}^{2}}$
(b) $138.61 \frac{\mathrm{kgf}}{\mathrm{cm}^{2}}$
(c) $150.1 \frac{\mathrm{kgf}}{\mathrm{cm}^{2}}$
(d) $161 \frac{\mathrm{kgf}}{\mathrm{cm}^{2}}$
23. A cylinder 0.1 m diameter rotates in an annular sleeve 0.102 m internal diameter at $100 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The cylinder is 0.2 m long. If the dynamic viscosity of the lubricant between the two cylinders is 1.0 poise, find the torque needed to drive the cylinder against viscous resistance. Assume that Newton's Law of viscosity is applicable and the velocity profile is linear.
(a) $0.1645 \mathrm{~N} . \mathrm{m}$
(b) $0.1645 \mathrm{kN} . \mathrm{m}$
(c) $0.213 \mathrm{~N} . \mathrm{m}$
(d) $0.213 \mathrm{kN} . \mathrm{m}$
24. If the volume of a liquid decreases by 0.2 percent for an increase of pressure from $6.867 \mathrm{MN} / \mathrm{m}^{2}$ to $15.696 \mathrm{MN} / \mathrm{m}^{2}$, what is the value of the bulk modulus of the liquid?
(a) 4418 MPa
(b) 441.8 MPa
(c) 4.418 MPa
(d) $44180 . \mathrm{MPa}$
25. If a certain liquid has a viscosity of 0.048 poise and kinematic viscosity 3.50×10^{-2} stokes, what is its specific gravity?
(a) 1.23142
(b) 1.001
(c) 1.37142
(d) 1.17353

Email: info@engineersacademy.org Website : www.engineersacademy.org

ANSWERS AND EXPLANATIONS

1. Ans. (a)

Horizontal line representing zero shear stress for any velocity gradient is the condition for ideal fluid.
The curve B represents dilatant fluid.

$$
\tau=\mu\left(\frac{\mathrm{du}}{\mathrm{dy}}\right)^{\mathrm{n}} \mathrm{n}>1
$$

For pseudoplastic fluid, $\tau=\mu\left(\frac{d u}{d y}\right)^{n} \mathrm{n}<1$
For thixotropic fluid, $\tau=\tau_{0}+\mu\left(\frac{d u}{d y}\right)^{n} n<1$
For rheopectic fluid, $\tau=\tau_{0}+\mu\left(\frac{d u}{d y}\right)^{\mathrm{n}} \mathrm{n}>1$
For plastic fluid, $\tau=\tau_{0}+\mu\left(\frac{d \mathrm{~d}}{\mathrm{dy}}\right)$ i.e., $\mathrm{n}=1$
2. Ans. (d)
$C=\sqrt{\frac{k}{\rho}}=\sqrt{\frac{19.62 \times 10^{8}}{1000}}=1400 \mathrm{~m} / \mathrm{s}$
$\mathrm{K}=$ bulk modulus of elasticity
$\rho=$ mass density of water
3. Ans. (b)

Surface tension is due to cohesive force only.
4. Ans. (c)

Continuum approach means properties uniform through out the medium. This condition is valid only when mean free path (λ) is much lower as compare to characteristic length $\left(\mathrm{L}_{\mathrm{C}}\right)$.
5. Ans. (a)

For newtonian fluid

$$
\tau \alpha \frac{\mathrm{du}}{\mathrm{dy}} \alpha \frac{\mathrm{~d} \theta}{\mathrm{dt}}
$$

6. Ans. (b)

Fluid is substance which deform continuously under the action of small shear or tangential force.
7. Ans. (d)

Surface tension $=\frac{F}{\ell}$

$$
=\left(\frac{\mathrm{N}}{\mathrm{~m}}\right)=\frac{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{\mathrm{~m}}=\left[\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2}\right]
$$

8. Ans. (d)

$$
\begin{gathered}
\Delta \mathrm{P}=\mathrm{N} / \mathrm{m}^{2}=\mathrm{kg} \cdot \frac{\mathrm{~m}}{\sec ^{2}} / \mathrm{m}^{2}=\mathrm{M}^{1} \cdot \mathrm{~L}^{-1} \cdot \mathrm{~T}^{-2} \\
\mathrm{~V}=\mathrm{m} / \mathrm{s}=\mathrm{L}^{1} \mathrm{~T}^{-1} \\
\mathrm{~L}=\mathrm{M}=\mathrm{L}^{1} \\
\mu=\frac{\mathrm{N}-\mathrm{S}}{\mathrm{~m}^{2}}=\mathrm{kg} / \mathrm{m}-\mathrm{s}=\mathrm{M}^{1} \cdot \mathrm{~L}^{-1} \mathrm{~T}^{-1} \\
\mu=\frac{\mathrm{N}-\mathrm{S}}{\mathrm{~m}^{2}}=\mathrm{kg} / \mathrm{m}-\mathrm{s}=\mathrm{m}^{1} \cdot \mathrm{~L}^{-1} \mathrm{~T}^{-1}
\end{gathered}
$$

Check:
(a) $\frac{\Delta \mathrm{P}}{\mathrm{V}^{2} \cdot \mathrm{~L}}=\frac{\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}}{\mathrm{~L}^{2} \mathrm{~T}^{-2} \cdot \mathrm{~L}^{1}}=\mathrm{M}^{1} \mathrm{~L}^{-4}$
(b) $\frac{\mathrm{V} \cdot \mathrm{L}}{\mu}=\frac{\mathrm{L}^{1} \mathrm{~T}^{-1} \mathrm{~L}^{1}}{\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}}=\mathrm{M}^{-1} \mathrm{~L}^{-4}$
(c) $\frac{\Delta \mathrm{P}}{\mu . \mathrm{V} \cdot \mathrm{L} .}=\frac{\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}}{\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1} \cdot \mathrm{~L}^{1} \mathrm{~T}^{-1} \mathrm{~L}^{1}}=\mathrm{L}^{-2}$
(d) $\frac{\Delta \mathrm{P} \cdot \mathrm{L}}{\mu \cdot \mathrm{V}}=\frac{\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2} \cdot \mathrm{~L}^{1}}{\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1} \cdot \mathrm{~L}^{1} \mathrm{~T}^{-1}}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
9. Ans. (c)
$\tau \alpha \frac{d u}{d y} \alpha \frac{d \theta}{d t}$
where, θ is angular strain
$\frac{d u}{d y}$ has it's unit is s^{-1} i.e., rate of strain.
10. Ans. (a)

Self weight acts vertically down word

$$
\begin{aligned}
\mathrm{W} & =(\rho \mathrm{g})(\text { volume }) \\
& =\rho g(\mathrm{~A})(\mathrm{t})
\end{aligned}
$$

Resolving along the inclined plane,
$\rho g(A)(t) \sin \theta$
down word force $=\tau \mathrm{A}$ up word along the inclined plane.

Your GATEway to Professional Excellence IES \& GATE \& PSUS \& JTO \& IAS \& NET

$$
\rho \mathrm{g} \text { At } \sin \theta=\tau . \mathrm{A}
$$

\therefore shear stress, $\tau=\rho g t \sin \theta$
11. Ans. (d)

Viscosity is due to cohesion in liquids. As a temperature increases cohesion of liquids decrease.
Hence as $T(\uparrow) \mu$ of liquids decrease. In case of gases, viscosity depends on molecular momentum exchange. As temperature, increases, molecular activity of gases increase and hence resistance to flow increase. Hence as temperature increases viscosity of gases increases.
12. Ans. (b)
$\tau=\mu \frac{d u}{d y}$

$$
\begin{aligned}
& \frac{\mathrm{N}}{\mathrm{~m}^{2}}=\mu \frac{\mathrm{m} / \mathrm{s}}{\mathrm{~m}} \\
& \mu=\left(\frac{\mathrm{N}-\mathrm{s}}{\mathrm{~m}^{2}}\right)
\end{aligned}
$$

13. Ans. (c)

Surface tension $=\frac{\mathrm{F}}{\ell}=\frac{\mathrm{N}}{\mathrm{m}} \times \frac{\mathrm{m}}{\mathrm{m}}=\mathrm{J} / \mathrm{m}^{2}$
14. Ans. (d)
$\Delta \mathrm{P}=\frac{4 \sigma}{\mathrm{D}}$ in case of drop.
$\Delta \mathrm{P}=\frac{8 \sigma}{\mathrm{D}}$ in case of bubble
and hence

$$
(\Delta \mathrm{P})_{\text {bubble }}=2(\Delta \mathrm{P})_{\text {drop }}
$$

15. Ans. (a)

For Air

$$
\begin{aligned}
& \mu \propto \sqrt{T} \& \rho \propto 1 / T \\
& v=\frac{\mu}{\rho} \\
& v \propto \frac{\sqrt{T}}{1 / T} \\
& v \propto T^{3 / 2}
\end{aligned}
$$

16. Ans. (d)

Viscosity : It is a measure of resistance of a fluid which is being deformed by either shear stress or tensile stress.
Specific gravity : It is the ratio of density of fluid to the density of standard fluid.
Capillarity : It is the ability of liquid to flow against gravity combination of surface tension and adhesion act to lift the liquid.
17. Ans. (a)

Bulk modulus

$$
\mathrm{K}=-\frac{\mathrm{dp}}{\mathrm{~d} \forall / \forall}
$$

$$
\begin{array}{ll}
\text { and } & \forall=\frac{m}{\rho} \\
\therefore & d \forall=-\frac{d \rho}{\rho^{2}}
\end{array}
$$

18. Ans. (b)

A fluid at rest there can be no shear force (i.e. viscous force). The only forces acting on the free body are the normal pressure forces, exerted by the surrounding fluid on the plane surface and the weight of the element.
19. Ans. (b)

Surface tension is due to cohesion between liquid particles at the surface, where as capillarity is due to both cohesion and adhesion.
The property of cohesion enables a liquid to resist tensile stress, while adhesion enables it to stick to another body.
20. Ans. (c)

Newton's law of viscosity
$\tau=\mu \frac{\mathrm{du}}{\mathrm{dy}}$ Where $\tau=$ shear stress
$\frac{\mathrm{du}}{\mathrm{dy}}=$ Rate of strain

Email : info@engineersacademy.org
Website : www.engineersacademy.org

ENGINEERS ACADEMY

21. Ans. (d)

Pressure intensity inside a droplet

$$
\Delta \mathrm{P}=\frac{4 \sigma}{\mathrm{~d}}=\frac{4 \times 0.073}{10^{-3}} \mathrm{~N} / \mathrm{m}^{2}=292 \mathrm{~N} / \mathrm{m}^{2}
$$

22. Ans. (b)

$$
\mathrm{P}_{1}=70.30 \frac{\mathrm{kgf}}{\mathrm{~cm}^{2}}
$$

$\forall_{1}=0.01132 \mathrm{~m}^{3}$
$\forall_{2}=0.01121 \mathrm{~m}^{3}$
$\Delta \forall=\forall_{2}-\forall_{1}=0.01121 \mathrm{~m}^{3}-0.01132 \mathrm{~m}^{3}$

$$
=-1.1 \times 10^{-4} \mathrm{~m}^{3}
$$

$\mathrm{k}=\frac{\mathrm{dp}}{-\mathrm{d} \forall \mid \forall}$ (Bulk mod ulus)

$$
7034 \frac{\mathrm{kgf}}{\mathrm{~cm}^{2}}=\frac{\mathrm{P}_{2}-70.30 \frac{\mathrm{kgf}}{\mathrm{~cm}^{2}}}{\frac{-1.1 \times 10^{-4} \mathrm{~m}^{3}}{0.01132 \mathrm{~m}^{3}}}
$$

$$
\mathrm{P}_{2}=138.61 \frac{\mathrm{kgf}}{\mathrm{~cm}^{2}}=135 \mathrm{MPa}
$$

23. Ans. (a)
$\mu=1$ poise

$$
=0.1 \frac{\mathrm{~N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

hence bulk modulus is
$\mathrm{K}=\frac{-\mathrm{dp}}{\mathrm{d} \forall \mid \forall}=\frac{\left(15.696 \times 10^{6}-6.86 \times 10^{6}\right)}{0.002} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
$=4.418 \times 10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
$=4418 \mathrm{MN} / \mathrm{m}^{2}$
25. Ans. (c)

Given that
$\mu($ dynamic cis cosity $)=0.048 \times 10^{-1} \frac{\mathrm{~N}-\mathrm{s}}{\mathrm{m}^{2}}$

$$
\begin{aligned}
\mathrm{v}= & 3.50 \times 10^{-2} \text { stroke } \\
= & 3.50 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}
\end{aligned}
$$

we know that
$\frac{\mu}{\rho}=v$
$\mathrm{v}=\left(\frac{\mu}{\rho}\right)=\frac{0.048 \times 10^{-1} \frac{\mathrm{~N}-\mathrm{s}}{\mathrm{m}^{2}}}{3.50 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}}$
$\rho=1.31742 \mathrm{~kg} / \mathrm{m}^{3}$
$S=\frac{\rho}{1000}$
$\mathrm{S}=1.31742$

